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Abstract

Using a hypothetical data set, concrete examples are provided

to illustrate that canonical correlation analysis is the most

general linear model, subsuming other parametric procedures as

special cases. Specific statistical techniques included in the

analysis are t-tests, Pearson correlation, multiple regression,

ANOVA, MANOVA, and discriminant analysis. The discussion is aided

by an initial explanation of the logic of canonical analysis.

Further, similarities between the canonical technique and other

univariate and multivariate procedures are highlighted.
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Although multivariate statistical methodology has existed for

many years, its use by behavioral scientists has been limited

because of the difficulty of performing the analyses and the

complexity of interpreting the results. This state of affairs has

continued despite the widespread availability of computerized

statistical packages which simplify the execution of such

procedures (LeCluyse, 1990). Fish (1988) suggests that a lack of

understanding of multivariate techniques is a possible cause for

their limited usage. Given the complex interrelationships that

exist among multiple variables in education and other social

science settings, it is important that researchers become

conversant with multivariate analytic technives.

Univariate methods can be used to test hypotheses about the

effect of several independent (predictor) variables on a single

dependent (criterion) variable. Multivariate methods, on the

other hand, examine not only a set of independent variables, but

also a set of two or more dependent variables simultaneously. This

attribute makes them vital in behavioral studies (Fish, 1988,

p.130; Thompson, 19P6b). As Campbell (1992) explains, "because

human behavior includes multiple facets, each of which is affected

by a wide range of variables, many behavioral studies aFk questions

that involve both multiple independent and multiple dependent

variables" (p. 1). In such cases; multivariate methods should be

employed.

Fish (1988) discusses three reasons why multivariate

techniques are so important in behavioral research. The first is
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-that multivariate statistics limit the experimentwise Type I error

rate. Researchers often set stringent alpha levels in order to

avoid a testwise Type I error (erroneously rejecting a null

hypothesis). Unfortunately, when several hypotheses regarding the

same data set are tested using multiple univariate tests, the

experimentwise alpha level is actually inflated to an unknown

degree, leaving the researcher uncertain as to which "statistically

significant results are errors and which are not" (Thompson, 1991,

p. 80). Multivariate methods circumvent this problem. By

simultaneously testing relationships among all of the variables,

the possibility of a Type I error in the experiment is limited to

alpha (e.g., .05, .01, etc.).

The second reason multivariate techniques should be more

widely used is to increase power against committing a Type II error

(failing to detect statistically significant results). Thompson

(1988) explains that the "failure to employ multivariate methods

can lead to a failure to identify statistically significant results

which actually exist" (p. 12). As Campbell (1992) notes, "although

statistical significance is mainly inl:luenced by sample size and is

not the raison d'etre of research, it is still the benchmark by

which many journal editors guide their publication decisions"

(p.2). Hence, by choosing a univariate rather than a multivariate

method, a researcher may not only be choosing an analytic technique

that masks the hoped for effect, but may thereby lose an

opportunity to publish.

The third and most important reason for using multivariate
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techniques is that they "best honor the reality to which the

researcher is purportedly trying to generalize" (Thompson, 1988, p.

12). This reality is human behavior, which involves multiple

-causes and multiple effects. McMillan and Schumacher (1989) assert

that "in the reality of complex social situations the researcher

needs to examine many variables simultaneously" (p. 207). Such

analyses are possible only with multivariate techniques which

enable us to understand the relationships among several variables

at one time.

Kerlinger (1986) contends that the "preoccupation of

behavioral scientists today is more likely to be with multiple

relations" (p. 65), making the use of multivariate procedures

essential. According to Campo (1990), "multivariate statistical

methods deal with the full system of interrelationships between

variables and thus shed the most light upon how variables work

together and influence each other" (p. 1). Canonical correlation

analysis is the most powerful multivariate technique for studying

such interrelationships.

Although analysis of variance (ANOVA) techniques have been

used extensively, Thompson (1986a) shows general linear models,

such as multiple regression and canonical correlation analysis, to

be superior. Since Cohen's (1968) classic article on the use of

regression as the most general linear model, subsuming analyses of

variance techniques, the use of multiple regression dramatically

increased (Willson, 1982). However, as Knapp (1978) demonstrates,

canonical correlation analysis, and not regression, is the most
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general case of the general linear model. Thus, "virtually all of

the commonly encountered parametric tests of significance can be

treated as special cases of canonical correlation analysis, which

is the general procedure for investigating the relationships

between two sets of variables" (Knapp, 1978, p. 410). Fornell

(1978) makes this point more specifically stating that "multiple

-regression, MANOVA and ANOVA, and multiple discriminant analysis

can all be shown to be special cases of canonical analysis.

Principal components analysis is also in the inner family circle"

(p. 168).

Thompson (1984) points out, however, that while the

recognition of analyses of variance methods as special cases of

regression generated increased usage of multiple regression, the

recognition of canonical correlation analysis as the most general

case of the general linear model did not produce a similar increase

in the use of canonical techniques. Notwithstanding the increased

use of regression analysis, researchers (Edgington, 1974; Willson,

1980; Goodwin & Goodwin, 1985) report that most studies published

in prominent research journals over the last several decades have

employed analysis of variance techniques (ANOVA, ANCOVA, MANOVA,

MANCOVA).

The purpose of the current paper is to explain the logic of

canonical correlation analysis and to demonstrate, with the use of

a hypothetical data set, that canonical correlation subsumes other

parametric significance tests as special cases. Six familiar

univariate and multivariate procedures are demonstrated in a series
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of paired calculations that includes the results of each procedure

and then compares the results to canonical results using the same

variables. The procedures examined include t-test, Pearson

correlation, multiple regression, ANOVA, MANOVA, and discriminant

analysis. The equivalence of results and the common features of

the statistical methods are highlighted, and the superiority of

canonical methods is examined. The discussion also includes the

logic of canonical analysis and an explanation of the equivalence

of the standardized weights for the various procedures.

A Discussion of Canonical Correlation Analysis

Canonical correlation analysis is a nultivariate technique

used to study relationships between two variable sets, a predictor

set and a criterion set. For canonical analysis, each set has at

least two variables. As Thompson (1984) indicates, canonical

correlation analysis can be presented in bivariate terms, which

facilitates the explanation since most researchers feel comfortable

with the bivariate correlation coefficient. As a matter of fact,

canonical correlation coefficient is simply the Pearson correlation

between scores in the two variable sets.

Similar to other procedures, synthetic scores must be

developed before the canonical correlation can be calculated.

These synthetic scores are similar to YHAT scores (the predicted

score) in regression analysis, to factor scores in factor analysis,

and to discriminant scores in discriminant function analysis. As

with other parametric methods, the synthetic scores are the focus

of the analysis in canonical correlation (Thompson, 1988).
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The synthetic scores are produced the same way across

statistical procedures. A weight for each variable is developed

"to optimize some condition" (Thompson, 1991, p. 81). These

weights are equivalent, though terminology differs across

procedures. According to Taylor (1992), they are called beta

weights in regression, factor pattern coefficients in factor

analysis, discriminant function coefficients in discriminant

analysis, canonical function coefficients in canonical correlation

analysis. In addition to weights, the original scores on each

variable are converted to z-scores. Then, for each subject, and on

each variable, the z-scores are multiplied by weights and the

resulting values are summed across each variable in the set.

Taylor (1992) notes that these "weights are applied to...the

predictor and criterion variables in such a way that redundancy

among the synthetic composites is eliminated" (p. 70). The result

is a composite set of synthetic predictor scores and a composite

set of synthetic criterion scores, scores on which the canonical

analysis is based.

In canonical correlation, functions similar to principal

components are derived from the synthetic scores; each function

represents a linear combination of both the predictor and criterion

composite scores, and is orthogonal, or uncorrelated, with the

other functions. The number of functions extracted in canonical

analysis equals the number of variables in the smaller of the two

variable sets (Thompson, 1991). Thus, the first function extracted

accounts for the maximum possible correlation between the two sets
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of scores and produces the largest canonical correlation (Rc). The

second function represents the maximum correlation possible from

the remaining variance, subject to the restriction that it be

perfectly uncorrelated with the first function (Campo, 1990). Each

successive function is extracted in this manner.

Viewing analytical techniques such as canonical correlation as

measures of bivariate relationships among variables enables one to

understand the reasoning behind canonical correlation analysis and

why it produces the same research results as other parametric

methods. Kerlinger (1986) contends that the study of relationships

among variables is the basis of scientific research, and that there

is no empirical way to know anything except through its relations

to other things. Thompson (1991) asserts further that "all

classical analytic methods are correlational" (p. 87, emphasis in

the original), and Knapp (1978) proffered mathematical proofs of

this assertion. In the present paper the relationships of selected

analytic procedures (t- test, Pearson correlation, multiple

regression, ANOVA, MANOVA, and discriminant analysis) are examined

and the correlational nature of such relationships are illustrated

as special cases of canonical correlation analysis.

Demonstrating that Canonical Analysis

Subsumes Other Statistical Procedures

Hypothetical data presented in Table 1 are used to illustrate

the dynamics of canonical correlation analysis. The data consist
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of 24 cases concerning opinions (on a scale of 1-20) of

contemporary issues on which Democrats and Republicans often

differ. The predictor variables are PARTY (party afliliation of

subjects) and AGE (of subjects). The criterion variables include

LESSFED (less federal involvement), LESSWEL (less welfare

spending), MOREDEF (more defense), MORESS (more social security),

and CATMED (catastrophic medical program). Coding variables, also

shown in the data set, are explained when comparing canonical

correlation with factorial ANOVA and factorial MANOVA. For each of

the six parametric methods used in the demonstration, a canonical

correlation analysis is also computed. Appendix A containing the

SAS commands for each procedure is provided for those who wish to

replicate the analysis.

[INSERT TABLE 1 HERE)

Canonical Analysis Subsumes t-test

As novice researchers know, t-tests are used to determine if

two groups differ statistically on a variable of interest. In this

example, a t-test is used to ascertain whether Democrats and

Republicans differed in their attitude toward LESSFED. The t-test

results, reported in Table 2, indicate a statistically significant

difference is found, t=-9.0418, p=.0001. When the difference

between these two groups is determined using canonical analysis,

the result is F=81.7548, p=.0001, which is also reported in Table

2. The lambda value presented in the table is Wilks's lambda, a

value which ranges from zero to one and is used in this study for

testing the significance of a canonical correlation. According to
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Chacko (1986), the smaller lambda is -- that is, the closer to zero

-- the greater the likelihood of statistical significance.

As can be seen in the table, a different distribution is used

to report the results of each procedure; however, the calculated p
values are identical. Further, values in the F distribution are

the square of values in the t distribution. A double check of the

results shows that the square of -9.0418 (the t value) equals

81.7548 (the F value obtained in the canonical analysis).

[Insert Table 2 here]

Canonical Subsumes Pearson Correlation

Pearson correlation is the statistic most commonly used to
explore a relationship between two variables. A perfect

correlation between two variables is r= +1; when variables are

perfectly uncorrelated the correlation is r = 0. In our example,

a Pearson correlation is computed for the relationship between

MOREDEF and MORESS, and PROC CANCORR for the canonical analysis.

The results, reported in Table 3, show that the SAS command PROC

CORR for the Pearson correlation computed a correlation coefficient

of r=-.4412 (p=.0309); PROC CANCORR, the SAS command for canonical

analysis, produced the canonical correlation coefficient, Rc=.4412

(p=.0309). A canonical correlation coefficient cannot be negative;

however, the magnitude of the two coefficients is identical, as is

the calculated probability.

[Insert Table 3]

Canonical Subsumes Multiple Regression

Hinkle, Wiersma, and Jurs (1988) define regression as "the
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process of predicting or estimating scores on a Y variable based on

knowledge of scores on an X variable" (p. 441). Multiple

regression simply expands that concept by using several variables

to predict scores on the criterion variable. In this example,

MORESS is the criterion variable and LESSFED, LESSWEL, and MOREDEF

serve as the predictor variables. The results of the multiple

regression and the canonical analysis are presented in Table 4.

In this case we find that the squared multiple correlation

coefficient (R2) derived from the regression analysis is Ra=.2182

(F=1.861, df=3, 20, p=1688). The canonical analysis resulted in a

squared canonical correlation coefficient of Rc2=.2182 (F=1.8605,

df=3, 20, p=.1688). The difference in the value of F is the result

of rounding.

[Insert Table 4]

Canonical Subsumes Factorial ANOVA

Analysis of variance procedures such as ANOVA and MANOVA

require that intervally scaled to be reduced to nominal scale.

(Kerlinger, 1986; Thompson, 1988). In the present study, the

predictor variable PARTY is nominally scaled; however, AGE is

intervally scaled. Therefore, the variable AGEPR (age prime),

found in Table 1, was created to divide AGE values into a

trichotomy, with subjects under 30 designated as 1, those 31-45

designated as 2, and those 46 and older designated as 3.

For analytic purposes, a priori orthogonal contrast coding is

used. The coding variables and values are also found in Table 1.
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Kerlinger and Pedhazur (1973, pp. 131-140) explain how numeric

values are assigned in orthogonal contrasts; however, Thompson

(1987) notes that "contrasts are uncorrelated or orthogonal when

the contrasts each sum to zero and when the cross-products of each

pair of contrasts all sum to zero also" (p. 8).

Orthogonal planned comparisons are superior to aralysis of

variance for two reasons. First, planned comparisons offer more

power against committing a Type II error. In other words, it is

more likely that the researcher who uses planned comparisons will

find a statistically significant effect if it exists (see Thompson,

1987 for a discussion). Secondly, planned comparisons force the

researcher to be more thoughtful in conducting research "since the

number of planned comparisons that can be tested is limited by the

number of degrees of freedom for an effect" (Thompson, 1987, p.

11).

Even though orthogonal planned comparisons and other a

priori contrasts represent an improvement over converting

interval data to nominal scale, canonical correlation is the

preferred method of analysis because no information is discarded

as occurred with AGE in this study. Sacrificing variance is

avoided when the data are already nominal, as is seen in this

example with PARTY (Thompson, 1985a). However, nominally scaled

variables are infrequently used in social science research.

The number of contrast variables needed equals the degrees

of freedom (Thompson, 1987). Thus, AGEPR, for which there are

two degrees of freedom, is represented by the orthogonal
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contrasts C1 and C2, while PARTY, for which there is one degree

of freedom is designated with the orthogonal contrast CPTY. Both

CPTY1 and CPTY2 are crossproducts, in this case of CPTY by Cl,

and CPTY by C2, respectively.

Using the SAS command PROC ANOVA, a 3 x 2 factorial ANOVA

was computed with AGEPR and PARTY as independent variables aLd

MORESS as the dependent variable. Results are reported in Table

5 for the main effects of AGEPR (F=5.81, p=.0113) and PARTY

(F=14.67, p=.0012), and for the PARTY by AGEPR interaction

(F=2.75; p=.0906). The error effect for the full ANOVA model is

.3614711, and can be computed by dividing the sum of squares

error by the sum of squares total (172.00000 / 475.83333) (Campo,

1990).

[Insert Table 5]

To obtain comparative results with canonical analysis, a

series of four calculations was run using the contrast coding

variables and the SAS command PROC CANCORR. Model 1, the first

canonical analysis, provides a full model analysis using all five

contrast coding variables, Cl, C2, CPTY, CPTY1, and CPTY2 as the

predictor set. Model 2 analyzes the three coding variables CPTY,

CPTY1, and CPTY2 as predictors, while Model 3 uses four contrast

coding variables Cl, C2, CPTY1, and CPTY2 as predictor variables,

and Model 4, the fourth canonical analysis, uses the three

contrast variables, Cl, C2, and CPTY, as predictors.

Lambdas for these calculations are presented in Table 6.

According to Thompson (1985), lambda is analogous to a sum of
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squares in an ANOVA, and is an estimate of an effect. Unlike the

sum of squares, however, a small lambda that approaches zero is

desirable, as noted previously. The relationship between lambda

and sum of squares can be seen in Table 6 where the full model

lambda (.3614711) is the same value obtained above by dividing

the sum of squares error by the sum of squares total. ticcording

to Thompson (1988), the squared canonical correlation coefficient

equals 1 - lambda (full model), in this case Rc=.6385289.

[Insert Table 6 here]

The next step in the analysis is to convert the canonical

.lambdas to separate omnibus ANOVA effects. This is done by

dividing the full model lambda (Model 1) by the lambda value for

each effect (Models 2, 3, and 4). To compute the ANOVA lambda

for the AGEPR main effect, the Model 1 canonical lambda is

divided by the Model 2 canonical lambda. Specifically, in order

to obtain the ANOVA lambda for the AGEPR main effect, the full

model lambda which used all five contrast coding variables (C1,

C2, CPTY, CPTY1, CPTY2) is divided by the Model 2 lambda which

used the contrast coding variables for the PARTY main effect and

two-way interaction effect (CPTY, CPTY1, CPTY2). Using values

from Table 7, this conversion for AGEPR is: (.36147110/.59492119

= .607595). To derive the F value, another conversion is needed

using the formula [(1-lambda)/lambda] * (df error/df effect) = F.

This conversion is reported in Table 8. For the AGEPR main

effect, the conversion is [(1-.607595)/.607595] * (18/2) =

5.8125. Notice that the F calculations in Table 8 are the same as
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the ANOVA. F calculations in Table 5.

[Insert Table 8]

Canonical Subsumes MANOVA

A 2 X 3 factorial MANOVA using AGEPR and PARTY as the

independent variables, and LESSFED and MOREDEF as the dependent

variables was calculated. Table 9 reports values for lambda, F,

and the associated probabilities. As with the ANOVA

calculations presented above, four canonical analyses were

computed using the contrast coding variables, Cl, C2, CPTY,

CPTY1, and CPTY2, to test for the main effects of AGEPR, PARTY,

and the two-way interaction. Lambda values for the four

canonical computations are presented in Table 10. Table 11

presents the conversion of the canonical lambdas into MANOVA

lambdas. Note that the conversions result in values for lambda

that are within rounding error of the Table 9 MANOVA lambdas.

[Insert Tables 9, 10, & 11 here]

Canonical Subsumes Discriminant Analysis

According to Afifi and Clark (1984), "discriminant analysis

techniques are used to classify individuals into one or two or

more groups" (p. 247). Discriminant analysis is also useful for

descriptive purposes, identifying variables "which...contribute

to making the classification" (Afifi & Clark, 1984, p. 247).

Most often, discriminant analys s is used for classification

purposes.

Discriminant analysis is similar to canonical analysis in

that functions are extracted which represent linear combinations
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of the data. However, for discriminant analysis, the number of

functions derived equals the smaller of (1) the number of groups

minus one, or (2) the number of predictor variables. In this

analysis, one predictor variable, PARTY, is used to predict

scores on MORESS and CATMED. Thus, only one discriminant

function is extracted from the data. The SAS command PROC

CANDISC computed a discriminant analysis resulting in one

significant function (F=5.9130, p=.0092), presented in Table 12.

Also computed was a squared canonical correlation coefficient of

Rc=.360265.

To calculate the corresponding canonical correlation

analysis, the contrast coding variable CPTY was used as the

predictor. The results of the canonical analysis, also presented

in Table 12, are identical to the findings that emerged from the

discriminant analysis.

Conclusion

The purpose of this study was to illustrate that canonical

correlation analysis is the most general case of the general

linear model. This attribute of canonical analysis is more

important for heuristic value than for practical application, as

can be determined from the ANOVA and MANOVA examples. However,

this heuristic value should not be disregarded. Understanding

that there is a common correlational basis for all parametric

procedures may prompt researchers to be more selective in their

choice of analytic techniques, particularly when considering OVA

methods, such as ANOVA and MANOVA which discard variance.
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Indeed, had all the variability of the data been subjected to a

canonical analysis rather than using contrast coding, different

conclusions may have resulted. The coding used in this example

served the useful purpose of illustrating that OVA procedures are

subsumed by canonical analysis. In a practical research context,

however, understanding that results may differ, depending upon

whether variance is discarded in OVA techniques or taken

advantage of in more general methods like canonical analysis,

takes on great importance.

I 5
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Table 1

DATA SET FOR CCA SUBSUMES ALL

L L M
M CE E 0

P 0 A S S R A C C
C A R T S S E G C P P
A R A E M F W D E P T T
S T G S E E E E P C C T Y Y
E Y E S D D L F R 1 2 Y 1 2

1 1 35 20 19 13 15 12 2 0 2 -1 0 -2
2 1 25 17 19 16 12 14 1 -1 -1 -1 1 1

3 1 30 13 12 10 10 11 1 -1 -1 -1 1 1

4 1 29 13 14 9 10 10 1 -1 -1 -1 1 1

5 1 58 17 20 8 10 9 3 1 -1 -1 -1 1

6 1 25 14 15 7 8 8 1 -1 -1 -1 1 1

7 2 19 6 7 20 20 19 1 -1 -1 1 -1 -1
8 2 34 15 13 19 20 19 2 0 2 1 0 2

9 2 33 16 15 18 20 19 2 0 2 1 0 2

10 2 33 6 4 17 18 17 2 0 2 1 0 2

11 2 24 6 5 15 15 15 1 -1 -1 1 -1 -1
12 1 42 11 10 8 7 8 2 0 2 -1 0 -2
13 1 40 9 10 8 8 6 2 0 2 -1 0 -2
14 2 43 15 14 18 18 17 2 0 2 1 0 2

15 1 50 18 18 10 10 10 3 1 -1 -1 -1 1

16 2 60 15 15 17 18 17 3 1 -1 1 1 -1
17 2 26 6 6 20 19 19 1 -1 -1 1 -1 -1
18 2 20 5 4 19 19 20 1 -1 -1 1 -1 -1
19 2 52 14 14 16 15 16 3 1 -1 1 1 -1
20 1 50 18 18 10 10 9 3 1 -1 -1 -1 1

21 2 60 12 11 15 14 15 3 1 -1 1 1 -1
22 1 55 17 18 9 10 9 3 1 -1 -1 -1 1

23 1 39 17 15 8 7 5 2 0 2 -1 0 -2
24 2 53 10 12 18 20 18 3 1 -1 1 1 -1
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Table 2
Canonical Subsumes t-tests

(PARTY by LESSFED)

t-test analysis Canonical analysis
Mean for Democs. 9.67 Squared Rc .7880
SD 2.54 Rc .8877
Mean for Repubs. 17.67 lambda .2120
SD 1.72
t -9.0418 F 81.7548
df 22 df 1, 22
p calc .0001 p calc .0001

Table 3
Canonical Analysis Subsumes Pearson Correlation

(MOREDEF with MORESS)

Pearson Correlation Canonical Analysis
Squared Rc .1947

r -.4412 Rc .4412
lambda .8053
F 5.3180
df 1, 22

p calc .0309 p calc .0309

NOTE: Rc cannot be negative.

Table 4
Canonical Subsumes Multiple Regression

(MORESS with LESSFED, LESSWEL, & MOREDEF)

Multiple Regression Canonical Analysis
R Squared .2182 Squared Rc .2182

Rc .4671
lambda .7818

F 1.861 F 1.8605
df 3, 20 df 3, 20
p calc .1688 p calc .1688
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Table 5
Factorial ANOVA

(AGEPR and PARTY by MORESS)

Source SOS df MS (SOS/df) F p calu
AGEPR 111.0833 2 55.54167 5.81 .0113
PARTY 140.1667 1 140.16667 14.67 .0012

AGEPR*PARTY 52.58333 2 26.29167 2.75 .0906
ERROR 172.00000 18 9.55556
TOTAL 475.83333 23

Table 6
Canonical Analyses Using Four Models

Model Predictors of MORESS lambda
1 Cl, C2, CPTY, CPTY1 CPTY2 .36147110
2 CPTY, CPTY1, CPTY2 .59492119
3 Cl, C2, CPTY1, CPTY2 .65604203
4 C1, C2, CPTY .47197898

Table 7
Conversion of Lambdas into Ratios for Each Effect

Effect Models Conversion Result
AGEPR 1/2 .36147110/.59492119 .607595

PARTY 1/3 .36147110/.65604203 .550989
AGEPR*PARTY 1/4 .36147110/.47197898 .765863

Table 8

Source

Conversion of Results to ANOVA F's

(df error/
[(1-lambda)/lambda] * df effect) = F calc

AGEPR [(1-.607595)/.607595] * (18/2)
.6458332 9 5.81250

PARTY [(1-.550989/.550989] * (18/1)
.8149183 18 14.66860

AGEPR* [(1-.765863/.765863] * (18/2)
PARTY .3057166 9 2.75145

2 7;
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Table 9
Factorial MANOVA

AGE and PARTY by LESSFYD and MOREDEF

Source
AGEPR
PARTY
AGEPR*PARTY

Lambda
. 72382289
. 14656153
.71355157

df F p calc
4/34 1.4909 .2267
2/17 49.4961 .0001
4/34 1.5274 .2162

Table 10
Canonical Analysis Using Four Models

Model Predictors of LESSFED & MOREDEF
1 Cl, C2, CPTY, CPTY1 CPTY2
2 CPTY, CPTY1, CPTY2
3 Cl, C2, CPTY1, CPTY2
4 Cl, C2, CPTY

Effect
AGEPR
PARTY
AGEPR*PARTY

Table 11
Conversion to MANOVA Lambdas

Models
1/2
1/3
1/4

Conversion

lambda
. 10314121
. 14249510
. 70374003
. 14354045

. 10314121/.14249510

. 10314121/.70374003

. 10314121/.14354045

Table 12
Canonical Subsumes Discriminant Analysis

(PARTY with MORESS and CATMED)

Discriminant Analysis
Function I
Squared Rc
Rc
lambda
F
df
p calc

. 360265

. 600220

. 639735
5.9130
2, 21
.0092

Results
. 723823
. 146562
. 718552

Canonical Analysis
Function I
Squared Rc .360265
Rc .600220
lambda .639735
F 5.9130
df 2, 21
p calc .0092



Canonical Subsumes All 24

APPENDIX A

SAS COMMANDS FOR CANONICAL SUb.UMES ALL PARAMETRIC TESTS

OPTIONS LS=80;
TITLE 'CCA SUBSUMES ALL FOR SERA 1993';
DATA ONE;
INFILE KADI;
INPUT CASE 1-2 PARTY 4-5 AGE 7-8 MORESS 10-11 CATMED 13-14
LESSFED 16-17
LESSWEL 19-20 MOREDEF 22-23 AGEPR 25-26 Cl 28-29.C2 31-32 CPTY
34-35 CPTY1 37-38
CPTY2 40-41;
PROC PRINT;
TITLE 'DATA SET FOR CCA SUBSUMES ALL';
PROC MEANS;
VAR MORESS CATMED LESSFED LESSWEL MOREDEF;
PROC SORT; BY PARTY;
PROC MEANS;
VAR MORESS CATMED LESSFED LESSWEL MOREDEF;
BY PARTY;
TITLE 'MEANS OF VARIABLES';
PROC TTEST;
CLASS PARTY; VAR LESSFED;

TITLE 'CCA SUBSUMES TTEST';
PROC CANCORR;
VAR LESSFED;
WITH PARTY;
TITLE 'CCA SUBSUMES TTEST';
PROC CORR;
VAR MOREDEF MORESS;
TITLE 'CCA SUBSUMES CORRELATION';
PROC CANCORR;
VAR MORESS;
WITH MOREDEF;
TITLE 'CCA SUBSUMES CORRELATION';
PROC REG;
MODEL AGE=LESSFED LESSWEL MOREDEF;
TITLE 'CCA SUBSUMES REGRESSION';
PROC CANCORR ALL;
VAR AGE;
WITH LESSFED LESSWEL MOREDEF;
TITLE 'CCA SUBSUMES REGRESSION';
PROC ANOVA;
CLASS AGEPR PARTY;
MODEL MORESS=AGEPR PARTY AGEPR*PARTY;
TITLE 'CCA SUBSUMES FACTORIAL ANOVA';
PROC CANCORR;
VAR MORESS; WITH Cl C2 CPTY CPTY1 CPTY2;
PROC CANCORR;
VAR MORESS; WITH CPTY CPTY1 CPTY2;
PROC CANCORR;
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VAR MORESS; WITH Cl C2 CPTY1 CPTY2;
PROC CANCORR; VAR MORESS; WITH Cl C2 CPTY;
TITLE 'CCA SUBSUMES FACTORIAL ANOVA,;
PROC ANOVA;
CLASS AGEPR PARTY;
MODEL LESSFED MOREDEF=AGEPR PARTY AGEPR*PARTY;
MANOVA H=_ALL_;
TITLE 'CCA SUBSUMES FACTORIAL MANOVA';
PROC CANCORR;
VAR LESSFED MOREDEF; WITH Cl C2 CPTY CPTY1 CPTY2;

PROC CANCORR;
VAR LESSFED MOREDEF; WITH CPTY CPTY1 CPTY2;

PROC CANCORL;
VAR LESSFED MOREDEF; WITH Cl C2 CPTY1 CPTY2;
PROC CANCORR;
VAR LESSFED MOREDEF; WITH Cl C2 CPTY;

TITLE 'CCA SUBSUMES FACTORIAL MANOVA';
PROC CANDISC ALL;
VAR MORESS CATMED; CLASS PARTY;
TITLE 'CCA SUBSUMES DISCR ANAL';
PROC CANCORR ALL;
VAR MORESS CATMED; WITH CPTY;
TITLE 'CCA SUBSUMES DISCR ANAL';


